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ASYMMETRICAL R- AND RC-NETWORK ELECTRICAL MODELS
FOR SOLVING NONLINEAR EQUATIONS OF UNSTEADY HEAT
CONDUCTION

L. A. Kozdoba, L. V. Knyazev, and I. D. Konoplev
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A method is given for calculating the parameters of R- and RC-network electrical models for solving non-
linear equations of unsteady heat conduction with variable heat sources (sinks) and given variable boundary
conditions of the first to fourth kinds.

In solving equations of unsteady heat conduction on electrical models with R and RC networks, the body is div-
ided by planes into elementary volumes in the form of irregular triangular pyramids. This allows greater accuracy in
approximating the body shape than rectangular division,” and greater accuracy in assigning the boundary conditions. The
use of asymmetrical networks in combination with rectangles allows free variation of the space intervals, i.e., simpli-
fies the choice of transition zones. The transition zones usually employed are parts of the network where the elementary
areas are right triangles.

A method of calculating transition zones for solving steady-state problems on R-networks was given in [3]; in [4]
it was shown that the transition zones of [3] may be used to solve unsteady problems on R-networks by the method of [5].

Asymmetrical triangular networks for solving two-dimensional
steady-state problems were proposed in [6].
The nonlinear equation for the potential u has the form
v (py ) + 8 — 7 0u/di = 0. (1)
The boundary conditions are
us=f(x, y, 2), (2)
B (f) = — v (0u/dn)g, (3)
8 [ug (f) — um(H)] = — v (Ou/on)g, (4)
ug(f) =m(t) or —p(0u/on)s = — py(Oum/dn)s. (5)

Fig. 1. Part of the body divided into ele- The initial condition is

mentary volumes: For an RC network, the ulx, y, z, 0)=fi(x, y, 2). (6)
currents modeling w and capacitances are
suppliedatA, B, ...[1, 2]. For anR-network,
resistances Ry, Ry are connected at A, B, ...
{5, 8,10]. For both R-C and R-networks, ca- Figure 1 shows part of a body divided into elementary volumes in
pacitances or resistances modeling the bound- the form of irregular triangular pyramids, the angles of the triangular
ary conditions are connected to the surface  faces being not more than 90°, The heavy lines correspond to the dis-
nodes. crete resistances of an asymmetrical network replacing this part of the

body and solving the equation of the potential u. The resistances R, Ry,
or Ry, connected to the nodes when the solution is based on an R-network, and the capacitances and Ry, connected to
the nodes when the solution is based on an RC network, have been omitted.

In the solution of the equations of unsteady heat conduction the
values of (2)-(5) are called boundary conditions of the I-IV kinds [7].

The light lines are the result of the intersection of planes normal to the edges of faces of the pyramid, whose ver-
tices are located at the point B.

The distribution of potential u along the i-th resistance (for example, AB) at time n may be interpreted as a linear
integral between points A and B

UB, n—Upr n= | yudl. (7

g

p

*We have in mind the solution of an equation written in a rectangular coordinate system; the situation is similar
for a cylindrical or spherical coordinate system.
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The current in the resistance may be interpreted as the total normal flux cutting the boundary of the volumes sur-
rounding both points and bounded by the polygons indicated by the light lines in Fig. 1.

Since the current density is equal to —uvu, we obtain
Jan=— | wlvu-jas, ®
s

where j is the unit vector normal to dS.

If Yu and pvu are expanded in a Taylor series relative to the point bisecting AB, and all the terms besides the
first are neglected, then Yu & (Vu)y, and pvu = po(Vu)g.

Since AB is normal to the area S;_,_g_4-5 the projection of vu on di is the same as the projection of vu on j.
Therefore

UB, n — U, n == IrB|V tlpcosa, (9
, Jap = — o Si—2-3-4—5 | VUocOs 0. (10)
The resistance connecting A and B is equal to

Rap — UA,n—UB.n _ [aB ’ (11
JaB Po Si—e—3-4—5

i.e., Ryp depends on the physical properties of the material and the AB method of dividing up the volume. If S;_5.3.4-5
were not normal to AB, the value of Ryp would depend on the orientation of the field.

ou
It is necessary to determine the volumes relating to the terms 8 and v — in (1). If (1) is integrated over the
volume surrounding the peint B (Fig. 1), we obtain ot

Svﬁvmv 0do + wyedv -

Or, if 9u/dt is written in finite differences,

S”v(wu)dwr Hjﬁdv+5”n@'—?2;—“zﬁ&idv= 0. (13)

Then, by the Ostrogradskii-Gauss divergence theorem,

= 0. (12)

S“V(W”)dv:LSV(PVu'i)dS- (14)

There are no other terms on the right, since the corresponding unit vectors reduce them to zero.

Substituting (14) into (12) and (13), we obtain

fjv Wu,mwdv_mn_dv_ a9
H V(wu-j)dSJr“gBde j‘ﬁ%—uﬂdvzo. (16)
S v v ‘;) )

ou Ug, n—1 — U
If the volume integrals in (15) and (16) are replaced by the values 8, 7 ar and 7 B il PB M measured at

At

B and multiplied by the volume bounded by areas perpendicular to sides iB (for example, Sj.p-g.4-5 perpendicularto AB),
while the area integral is replaced by the currents in the network® from Eq. (8), we obtain, respectively,

8
ZJ13+§BU—TIB U=0, an
at
2JiB+?BU+ﬂB—M:]A—?_—L—lMU:0. (18)

*As long as we are dealing with a network of discrete resistances, i.e., of resistances to the flow of potential u,
with the currents of this potential, and so forth.
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Substituting (11) into (17) and (18). we obtain the generalized finite-difference equation of potential u for B:

S; du
—— Y (uy n— upg, n) - v—rp|—] v=0, 19
izp()(liB)( n Bn)'§‘ﬁ3 ‘B(\at )B 19
S, ) UB,n—t —UB, n
ZP‘O _— (uz,n_‘uB,n) + BBU‘{"‘QB‘ - v=0. 20y
- lip At

This method may be used in a network of any configuration in which the normals to the center of the branch con-

verge in one point. Accordingly, besides triangles, the method may be applied to rectangles, regular hexagons, and
isosceles trapezia.

MacNeal [6] examined the potential equation for a two-dimensional steady-state problem in this way, stipulating
that the perpendiculars to the sides need not necessarily bisect them, but must converge in one point.

For the electric potential (19) and (20) are written in the form

2 Vi—Vp + Ig—Csg =0, C
i Rei Ole
o Vm—VB.n Ve, n—1— VB, n
Vi Ve Tu—Ton | VB VB (22)
~  Rei Ry Ry
For the thermal potential (19) and (20) may be written
\' 7 n’“TB n aT
2 b wpvy— (V)R a1 | — |ty =0, (23)
; R, + wpvy — (CY)B. n1 (att) t
W Tin_“TBn TB,n—l_TB,n
_— = | wgv CY)g, n— v = 0. (24)
Y . B+ (€ V). nt = .

i

The analogy requires that the parameters of the RC network solving (23) be equal to

Rei = ligiRn / o Sti, (25)
Iy = wgvy/KRy, (26)
CB = (C 'Y)B, n—1 Ut T/RN (27)
or the time scale to
T = te/tt = RelCB/Rtl (CY)UC' (28)
The parameters of the R-network solving (24) are
Rei= ligiRn/ ko S, (29)
Ry= VuKRn / wo; (30)
with Vv > VB,n if w is a heat source, or with Vyy « Vg p if w is a heat sink; as in [10-12],
R; = AtRN/(cY)p, n—1 ¥t (31)

Expressions for the parameters of the RC and R-networks, used in specifying the boundary conditions, are derived
analogously, as in[1,2,5,8,9,10,12,13].

The method presented above may be used successfully not only to solve unsteady heat éonducting problems on
pure network models RC. and R), but also on combined models: RC continuum [11] or R-continuum [1231%.

An example of the determination of the unsteady temperature field of a plate using an R-network with asymmetri~
cal unequal cells is given below.

The results are compared with the solution for an R-network and for a combined model (R-network and conductive
paper). The nodes of the R-network and the combined model are located at the comers of squares. Results of solutions
on R-networks and combined models of this kind have been frequently compared [4-8, 8-14, etc.] with analytical
(exact and approximate) and numerical solutions and with the data of thermal experiments on models and full-scale

*The combined model in [12] is an R-network and conductive paper.
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systems. Therefore, solutions obtained on R-networks and combined models (square cells) may serve as a teference for

checking the validity of solutions on asymmetrical networks.
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Fig. 2. Asymmetrical network (a) and nodes of network withsquare cells (b). The
temperature distribution is given (as fractions of T) for the steady-state regime.

First, optimal time and space intervals were chosen for solving the control problem on a network with square cells.

Since the unsteady finite-difference heat conduction equation is solved on R-networks or combined models (con-
tipuum and R-network) is using an implicit scheme, the relationship of the space and time intervals affects only the
accuracy, not the stability or convergence of the solution.
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Fig. 3. Temperature distribution with time along diagonal DE (Fig. 2).
I and II) results of solution on the asymmetrical network and onthe net-
work with square cells and combined model: 1) 5 sec, 2) 150, 3) 500,
4)1000, 5)2500, 6)3500, 7) 7500, 8) 11 500, 9) 23 500 sec, 10) steady-
state conditions.
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Figure 2a shows one-half of the cross-section of a square plate (of side L), for which boundary conditions of third
kind are specified on sections I, II of length 0.75L:
Bi =al/)h =10,

The temperature of the medium in sections I, II is, respectively, 0.2T and 0.8T. The initial temperature of the
plate is zero.

Figure 2a shows an asymmetrical triangular network (resistances R, are shown only for the three points A, B, D) and
the steady-state temperatures at the nodes.

Figure 2b shows the square network on which the control problem is solved; the temperatures are those obtained on
the square network and the isotherms those obtained on the combined model under steady-state conditions.

The values of the parameters of the asymmetrical network (Fig. 2a) were calculated from expressions derived from
(29)-(31), taking into account the remark about calculating the parameters of the network for modeling the boundary
conditions. For example (Fig. 2a),

l
Rap = ho—P-Ry; RAB=7»k—lA—BRN;
lef lfk
At At
Ry = ——————Ry; Rp=———— Ry;
(CY)a, nScter (€ ¥)B. n Sderpgna

Rg.A = RN/O‘A, aler etc.

If boundary conditions of the second kind had been specified at the corresponding part of the surface, then

Roa=VmKRy/qa, nler .
In this case, as always, conditions assumed in deriving Ry are the same as in deriving (30).

Figure 3 shows the temperature distribution with time along diagonal DE of Fig. 2 for various values of time, ob-
tained on the asymmetrical network, and the network with square cells and the combined medel. The results of solving
on the last two models practically coincide.

Therefore, the method proposed may be used to calculate the R and R-C parameters of pure network and com-
bined models with asymmetrical division.

An asymmetrical network degenerates into a rectangular one, but the method of calculation does not change.

I U Ui v Figure 4 shows a rectangular network with cells of different sizes and a
_;_,_ 2_ 3 transition zone. The resistances in the regions with rectangular cells of different
v | - Vl— ! Vil vy Sizes and in the transition zone are calculated by the general method. For
M7 15 example
I *
771078 %\9\ '
K% h ! Ix
Y Y R e h XV B R —p, XV
¥ — X—Vl = Ay ——— Kn, X—vi= A ——— Ru,
i Ilz X I/j Al 10—6 li—10
| !
! ! Ayt At
D YR & Ry_v1 = b ——— R, Ry1= Ry, etc.
% 5 " 1—7 (€YWL, n S1—s—g—10—7—1
o . v Similar expressions for the parameters of R and R-C networks may be derived
for the dimensionless equation of unsteady heat conduction and the corresponding

boundary conditions, as in[13], and for systems of heat and mass transfer equa-

Fig. 4. Networkwithtransitionzone. ;o.c a¢'in [14].

NOTATION

R — ohmic resistance; C = capacitance; u ~ potential; p, 1,6 — coefficients in (1)-(5); B and @ — internal and
external sources, respectively; t ~time; S — area; At — time interval; v — volume; V - electrical potential; T -
temperature; RN = Rei/Rti — scale factor for conversion from thermal to electrical resistances; I ~ electric current;

T —Tmi , ' . .
K =-—‘7—-—Vﬂ'°'~‘~ — scale factor for conversion from temperatures to voltages; w — heat source or sink function; q — spe-
 Vmin
cific heat flux per unit area and unit time; &, A, ¢ — heat transfer coefficient, thermal conductivity and volume specific
heat, respectively; Ry, Rq, Ry, R, — resistances, parameters of R-network as in [4, 5, 8, 10, 12, 13]. Indices: s — surface;
m - medium; n — number of time interval t = ny Aty + ny Aty + ... A, B —relate quantities to the points A, B, ...,
AB ~relate quantities to the segment AB; e — electrical model; t — thermal model.
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