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A method is given for ca lcula t ing  the parameters of R- and RC-network e lec t r ica l  models  for solving non- 
l inear  equations of unsteady heat  conduction with variable heat  sources (sinks) and given var iable  boundary 
conditions of the first to fourth kinds. 

In solving equations of unsteady heat  conduction on e lec t r ica l  models with R and RC networks, the body is d iv-  
ided by planes into e lementary  volumes in the form of irregular tr iangular pyramids,  This allows greater accuracy  in 
approximating the body shape than rectangular division,* and greater accuracy in assigning the boundary conditions. The 
use of asymmetr ica l  networks in combinat ion with rectangles allows free variat ion of the space intervals, i . e . ,  s impt i -  
fies the choice of transition zones. The transition zones usually employed are parts of the network where the e lementary  
areas are right tr iangles.  

A method of ca lcula t ing transition zones for solving s teady-s ta te  problems on R-networks was given in [3]; in [4] 
it was shown that the transition zones of [3] may be used to solve unsteady problems on R-networks by the method of [5]. 

[ 
Fig. 1. Part of the body divided into e l e -  
mentary volumes: For an RC network, the 
currents modeling w and capaci tances  are 

supplied a tA,  B . . . .  [1, 2]. For an R-network, 
resistances R w, R t are connected at A,  B . . . .  

[8, 8, 10]. For both R-C and R-networks, ca -  
paci tances or resistances modeling the bound- 

ary conditions are connected to the surface 
nodes. 

Asymmetr ica l  tr iangular networks for solving two-dimensional  
s teady-s ta te  problems were proposed in [6]. 

The nonlinear equation for the potential  u has the form 

V (~V u)  + ~, - -  ~q & / O i  = O. (1) 

The boundary conditions are 

U s = f ( x ,  y, z), (2) 

0 (t) = - -  ~ (&~On)s, (s) 

[u s (t) - -  Um(t )] = - -  ~ (Oo/&Z)s, (4) 

Us( t  ) = Urn(t) or - -  ~ s ( O U / O n ) s  = - -  ~ m ( O U m / O n ) s .  (5) 

The ini t ia l  condition is 

u(x, y, z, O)= h(x, y, z). (6) 

In the solution of the equations of unsteady heat  conduction the 
values of (2)-(5) are ca l led  boundary conditions of the I-IV kinds [7]. 

Figure 1 shows part of a body divided into e lementary  volumes in 
the form of irregular tr iangular pyramids, the angles of the tr iangular 

faces being not more than 90". The heavy lines correspond to the dis-  
crete resistances of an asymmetr ica l  network replacing this part of the 

body and solving the equation of the potent ia l  u. The resistances R t, R w 
or Rc~, connected to the nodes when the solution is based on an R-network, and the capaci tances  and P'a, connected to 

the nodes when the solution is based on an RC network, have been omi t ted .  

The l ight lines are the result of the intersection of planes normal to the edges of faces of the pyramid,  whose ver -  

t ices are loca ted  at  the point B. 

The distribution of potent ia l  u along the i - th  resistance (for example ,  AB) at t ime n may  be interpreted as a l inear  

integral  between points A and B 

B 
UB, ,~ ~ UA, ,~ = [ V u d l .  (7) 

] 

A 

*We have in mind the solution of an equation written in a rectangular  coordinate system; the situation is s imilar  

for a cyl indr ica l  or spherical  coordinate system. 
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The current in the resistance may  be interpreted as the total  normal flux cutt ing the boundary of the volumes sur- 
rounding both points and bounded by the polygons indicated by the l ight  lines in Fig. 1. 

Since the current density is equal to ---pVu, we obtain 

where j is the unit vector normal to dS. 

.iS , (v , . j )as ,  (8) 
S 

If Vu and pVu are expanded in a Taylor  series re la t ive  to the point bisecting AB, and al l  the terms besides the 

first are neglected,  then Vu ~ (Vu)0, and gVu --- g0(Vu)0. 

Since AB is normal to the area 81.z_s_4.5, the project ion of Vu on dt is the same as the project ion of Vu on j .  
Therefore 

UB, n - -  Ua, n " ~  IaB IV ulo cos  ~, (9) 

JAB ~ - -  ~to $ 1 - z - 3 - 4 - 5  [ V tt o COS a. 

The resistance connecting A and B is equal to 

ttA, n - -  ttB, n IAB 
RAB = = 

JAB ~o S : - ~ - a - : 4 - 5  ' 

(1o) 

(11) 

i . e . ,  RAB depends on the physical  properties of the mate r ia l  and the AB method of dividing up the volume.  If 8 i - z - 3 - 4 - 5  

were not normal to AB, the value of RAB would depend on the orientat ion of the f ield.  
Ou 

It is necessary to determine  the volumes relat ing to the terms B and N ~ -  in (1). If (1) is integrated over the 
volume surrounding the point B (Fig. 1), we obtain 

V (~V u) dv 4- ~ dv - -  ~ ---O[-- 

v v o 

Or, if  au~dt is written in f inite differences, 

D V V 

Then, by the Ostrogradskii-Gauss divergence theorem, 

There are no other terms on the right, 

v S 

since the corresponding unit vectors reduce them to zero. 

(14) 

Substituting (14) into (12) and (13), we obtain 

V(~Vu.j)dS + ~dv-- "q Or 
S v v 

V (~V u. ]) dS dv + ~q A t 

S v ~; 

O U  3] l I B  n - - 1  - -  l i B ,  n measured a t  If the volume integrals in (15) and (16) are replaced by the values 8, "q - -  and ' 
Ot At 

B and mul t ip l ied  by the volume bounded by areas perpendicular  to sides iB (for example ,  S l -z-s-a-s  perpendicular  to AB), 

while the area integral  is replaced by the currents in the network* from Eq. (8), we obtain, respectively,  

v = O, (:7) diBq- ~BV - -  "qB ~ B 
i 

uB, n--1 - -  UB, n V = 0. (18) 
JiB @ ~BV-4- ~JB A t  

i 

*As long as we are deal ing with a network of discrete resistances, i . e . ,  of resistances to the flow of potent ial  u, 

with the currents of this potential ,  and so forth. 
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substituting (11) into (17) and (18), we obtain the generalized finite-difference equation of potential u for B: 

[% ( " i , n - - U  B,n)-~- ~B U - 7 t  B " - ~  V - = 0 ,  (19) 

i 

v = O. (20) ~0 (ui, ~ - -  %,  .) + ~B v + ~B A t 
i 

This method may be used in a network of any configuration in which the normals to the center of tile branch con- 
verge in one point. Accordingly, besides triangles, the method may be applied to rectangles, regular hexagons, and 
isosceles trapezia. 

MacNeal [6] examined the potential equation for a two-dimensional steady-state problem in this way, stipulating 
that the perpendiculars to the sides need not necessarily bisect them, but must converge in one point. 

For the electric potential (19) and (20)are written in the form 

VB OV 
E V~ + I B - - C B  - -  - -  O, 

i Rei  ate 
( 2 1 )  

~ V~ - -  VB 

�9 Rei 

+ V M - v B , .  VB, .-~ - -  VB,.  = 0. (22) 

RWB + R t  

For the thermal potential (19) and (20) may be written 

- -  L' t = 0 ,  

i RTI 

TB, n-1 - -  TB, n = Ti ,  n - -  TB, n ._[_ WB v t  + (c Y)B, n-1 v t 0. 
i Rt i  A t 

The analogy requires that the parameters of the RC network solving (23) be equal to 

Nei = / t B i R N  / )~0 S t i ,  

IB = WB v t / K R n  , 

C B = (c V)B, ~-1 vt T/RN 

or the time scale to 

(23) 

(24) 

(25) 

(26) 

(27) 

"c = te/t  t = R e i C B  / Rti (cy) v t. ( 2 8 )  

The parameters of the R-network solving (24) are 

Rei----/tBiR~/~-0 Stil (29) 

R u e =  VzvtKRN / w v  t (30) 

with V M >> VB, n if w is a heat source, or with V M << VB, n if w is a heat sink; as in [10-12], 

Rt = A tRN / (C Y)B, . -1  yr. (al)  

Expressions for the parameters of the RC and R-networks, used in specifying the boundary conditions, are derived 
analogously, as in [1, 2, 5, 8, 9, 10, 12.13]. 

The method presented above may be used successfully not only to solve unsteady heat Conducting problems on 
pure network models RC and R), but also on combined models: RC continuum [11] or R-continuum [12]*. 

An example of the determination of the unsteady temperature field of a plate using anR-network with asymmetr i -  

cal unequal cells is given below. 

The results are compared with the solution for an R-network and for a combined model (R-network and conductive 
paper). The nodes of the R-network and the combined model are located at the corners of squares. Results of solutions 
on R-networks and combined models of this kind have been frequently compared [4-6, 8-14, etc. ] with analytical  
(exact and approximate) and numerical solutions and with the data of thermal experiments on models and full-scale 

*The combined model in [12] is an R-network and conductive paper, 
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systems. Therefore, solutions obtained on R-networks and combined models (square cells) may serve as a reference for 
checking the validity of solutions on asymmetrical networks. 
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Fig. 2. Asymmetrical network (a) and nodes of network with square cells (b). The 
temperature distribution is given (as fractions of T) for the steady-state regime. 

First, optimal time and space intervals were chosen for solving the control problem on a network with square ceils, 

Since the unsteady finite-difference heat conduction equation is soIved on R-networks or combined models (con- 
tinuum and R-network) is using an implicit scheme, the relationship of the space and time intervals affects only the 
accuracy, not the stability or convergence of the solution. 
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Fig. 8. Temperature distribution with time along diagonal DE (Fig. 2). 

T and Tl) results of solution on the asymmetrical network and on the net- 

work with square cells and combined model: 1) 5 sec, 2) 150, 3) 500, 

4)1000, 5)2500, 6)3500, 7)7500,8) 11 500, 9) 23 500sec, I0) steady- 
state conditions. 
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Figure 2a shows one-half  of the cross-section of a square plate (of side L), for which boundary conditions of third 
kind are specified on sections I, II of length 0.7aL: 

B i  = ~L/L = I 0 .  

The temperature of the medium in sections I, II is, respectively, 0.2T and 0.8T.  The init ial  temperature of the 
plate is zero. 

Figure 2a shows an asymmetrical triangular network (resistances R t are shown only for the three points A, B, D) and 
the steady-state temperatures at the nodes. 

Figure 2b shows the square network on which the control problem is solved; the temperatures are those obtained on 

the square network and the isotherms those obtained on the combined model under steady-state conditions. 

The values of the parameters of the asymmetrical  network (Fig. 2a) were calculated from expressions derived from 

(29)-(31), taking into account the remark about calculating the parameters of the network for modeling the boundary 

conditions. For example (Fig. 2a), 

IAB RN ; 

A t  At  
Rt~. = RN ; RIB = RN ; 

( c y  )a, n Scb, fk ( c V )B ~ &e;pqna 

R~ A = R n /aA ,  n Ict~ etc. 

If boundary conditions of the second kind had been specified at the corresponding part of the surface, then 

RqA == VNt K R  N / qA, n I c k  . 

In this case, as always, conditions assumed in deriving Rq are the same as in deriving (30). 

Figure 3 shows the temperature distribution with t ime along diagonal DE of Fig. 2 for various values of t ime, ob- 

tained on the asymmetrical  network, and the network with square cells and the combined model. The results of solving 

on the last two models practically coincide. 

Therefore, the method proposed may be used to calculate the R and R-C parameters of pure network and com-  

bined models with asymmetrical  division. 

An asymmetrical  network degenerates into a rectangular one, but the method of calculat ion does not change. 

\ 

Fig. 4. 
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Network with transition zone. 

Figure 4 shows a rectangular network with cells of different sizes and a 

transition zone. The resistances in the regions with rectangular cells of different 

sizes and in the transition zone are calculated by the general method. For 

example, 

/X-Vl I x - v I  
Rx-v1 = ;~8 - -  RN , R x - w  = ~7 - -  R N ,  

l l o - 6  I7--10 

l v - v I  A l 
R v - H - -  M RN, R#I  = 

Ii--7 (C ~)Vl, n S1-3-6-10-7-1 
RN, etc. 

Similar expressions for the parameters of R and R-C networks may be derived 

for the dimensionless equation of unsteady heat conduction and the corresponding 

boundary conditions, as in [13], and for systems of heat and mass transfer equa- 

tions, as in [14]. 

NOTATION 

R - ohmic resistance; C - capacitance;  u - potential ;  g, T], 6 - coefficients in (1)-(5); B and e - internal and 

external sources, respectively; t - t ime;  S - area; At -- t ime interval;  v -- volume; V - electr ical  potential ;  T - 

temperature; R N = Rei/Rti - -scale  factor for conversion from thermal to electr ical  resistances; I - electric current; 

T -  Tmiu - scale factor for conversion from temperatures to voltages; w - heat source or sink function; q - spe- 
K -- g - -  groin 

cific heat flux per unit  area and unit  t ime;  a ,  k, c - heat transfer coefficient, thermal conductivity and volume specific 

heat, respectively; R a ,  Rq, R w, R t -- resistances, parameters of R-network as in [4, 5, 8, 10, 12, 13]. Indices: s - surface; 

m - medium;  n - number of t ime interval t = n I At I + n2 At9 + ... ; A, B - relate quantities to the points A, B . . . . .  

AB - relate quantities to the segment AB; e - electr ical  model;  t - thermal model. 
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